
Transport Layer: 3-1

Computer Networks

Jong-won Lee

Handong University

Chapter 3: roadmap
▪ Transport-layer services

▪ Multiplexing and demultiplexing

▪ Connectionless transport: UDP

▪ Principles of reliable data transfer

▪ Connection-oriented transport: TCP
• segment structure

• reliable data transfer

• flow control

• connection management

▪ Principles of congestion control

▪ TCP congestion control
Transport Layer: 3-2

TCP flow control
application

process

TCP socket
receiver buffers

TCP
code

IP
code

receiver protocol stack

Q: What happens if network layer
delivers data faster than application
layer removes data from socket buffers?

Network layer
delivering IP datagram

payload into TCP
socket buffers

from sender

Application removing
data from TCP socket

buffers

Transport Layer: 3-3

receiver controls sender, so sender
won’t
by transmitting too much, too fast

flow control

receive window flow control: # bytes
receiver willing to accept

TCP flow control

▪ TCP receiver “advertises” free buffer
space in rwnd field in TCP header

• RcvBuffer size set via socket
options (typical default is 4096 bytes)

• many operating systems autoadjust
RcvBuffer

▪ sender limits amount of unACKed
(“in-flight”) data to received rwnd

▪ guarantees receive buffer will not
overflow

buffered data

free buffer spacerwnd

RcvBuffer

TCP segment payloads

to application process

TCP receiver-side buffering

Transport Layer: 3-4

receive window flow control: # bytes
receiver willing to accept

TCP Transmission Policy

▪ Sender Buffering
• ‘Tinygram’ wastes bandwidth

• a keystroke in telnet session = 41 byte

(40 byte header + 1 byte data)

• be able to reduce header overhead by grouping many small data segments into
one large TCP segment.

• Nagle’s algorithm (RFC 896)
when data come into the sender one byte, send the first byte. Then

1) buffer all the rest .

2) Send a new packet

• better to be disabled if used on mouse movements.

Transport Layer: 3-5

TCP connection management
before exchanging data, sender/receiver “handshake”:
▪ agree to establish connection (each knowing the other willing to establish

connection)
▪ agree on connection parameters (e.g., starting seq #s)

Transport Layer: 3-6

Agreeing to establish a connection

Q: will 2-way handshake always
work in network?

▪ variable delays

▪ retransmitted messages (e.g.
req_conn(x)) due to message loss

▪ message reordering

▪ can’t “see” other side

2-way handshake:

Let’s talk

OK
ESTAB

ESTAB

choose x
req_conn(x)

ESTAB

ESTAB
acc_conn(x)

Transport Layer: 3-7

2-way handshake scenarios

connection
x completes

choose x
req_conn(x)

ESTAB

ESTAB

acc_conn(x+1)

data(x+1) accept
data(x+1)

ACK(x+N)

No problem!

Transport Layer: 3-8

ESTAB

retransmit
req_conn(x)

req_conn(x)

client
terminates

server
forgets x

connection
x completes

choose x
req_conn(x)

ESTAB

ESTAB

acc_conn(x+1)

acc_conn(x+1)

Problem: half open
connection! (no client)

client
terminates

ESTAB

choose x
req_conn(x)

ESTAB

acc_conn(x)

data(x+1) accept
data(x+1)

connection
x completes server

forgets x

data(x+1)

retransmit
data(x+1)

accept
data(x+1)

retransmit
req_conn(x)

ESTAB

req_conn(x)

TCP 3-way handshake

SYN=1, Seq=x

choose init seq num, x
send TCP SYN msg

ESTAB

SYN=1, Seq=y
ACK=1; ACKnum=x+1

choose init seq num, y
send TCP SYNACK
msg, acking SYN

ACK=1, ACKnum=y+1

received SYNACK(x+1)
indicates server is live;
send ACK for SYNACK;

this segment may contain
client-to-server data

received ACK(y+1)
indicates client is live

SYNSENT

ESTAB

SYN RCVD

Client state Server state

LISTEN

Transport Layer: 3-9

▪ Three-way handshake : against abnormal cases

TCP 3-way handshake

Transport Layer: 3-10

Closing a TCP connection

▪ client, server each close their side of connection
• send TCP segment with FIN bit = 1

▪ respond to received FIN with ACK
• on receiving FIN, ACK can be combined with own FIN

▪ simultaneous FIN exchanges can be handled

Transport Layer: 3-11

Closing a TCP connection
▪ Performed separately in each direction.

Transport Layer: 3-12

FIN_WAIT_2

CLOSE_WAIT

FIN=1, seq=y

ACK=1; ACKnum=y+1

ACK=1; ACKnum=x+1

wait for server
close

can still
send data

can no longer
send data

LAST_ACK

CLOSED

TIMED_WAIT

timed wait
for 2*max

segment lifetime

CLOSED

FIN_WAIT_1 FIN=1, seq=xcan no longer
send but can
receive data

close()

client state server state

ESTABESTAB

close()

TCP: State Diagram

Transport Layer: 3-13

FIN WAIT 1: The client

has said it is finished.

FIN WAIT 2: The server

has agreed to release

(half close)

TIME WAIT : Wait for

all packets to die off.

Passive open

active open

▪ TIME_WAIT state
• wait

• wait for final segment to be transmitted before releasing connection

• Implementation-dependent (typically 30 sec, 60 sec, 120 sec)

• 2MSL wait protects against delayed segments from the previous “incarnation”
of the connection.

• 2MSL effects
• Socket pair cannot be

• If you kill a client and restart, it will get

• If you kill a server and restart, you may get a bind error.

TCP: State Transition Diagram

Transport Layer: 3-14

	슬라이드 1
	슬라이드 2: Chapter 3: roadmap
	슬라이드 3: TCP flow control
	슬라이드 4: TCP flow control
	슬라이드 5: TCP Transmission Policy
	슬라이드 6: TCP connection management
	슬라이드 7: Agreeing to establish a connection
	슬라이드 8: 2-way handshake scenarios
	슬라이드 9: TCP 3-way handshake
	슬라이드 10: TCP 3-way handshake
	슬라이드 11: Closing a TCP connection
	슬라이드 12: Closing a TCP connection
	슬라이드 13: TCP: State Diagram
	슬라이드 14: TCP: State Transition Diagram

