Computer Networks

Jong-won Lee

Handong University

Chapter 3: roadmap

James F. Kurose | Keith W. Ross

" Connection-oriented transport: TCP e bl
OMPUTER.

: NETWORKING
§ @ A@T‘;@-P-DC._)WN'.APPROACVH = =
[) fI OW CO nt ro I f — AElghth,Edltlon —

* connection management

Transport Layer: 3-2

TCP flow control

Q: What happens if network layer Application removing
delivers data faster than application data from TCP;S&Z?Z
layer removes data from socket buffers?
—flow control
receiver controls sender, so sender
won't Network layer
by transmitting too much, too fast delivering IP datagram ___

payload into TCP
socket buffers

receive window

flow control: # bytes
receiver willing to accept

application
proces

TCP socket
receiver buffers

from sender |

receiver protocol stack

Transport Layer: 3-3

TCP flow control

= TCP receiver “advertises” free buffer
space in rwnd field in TCP header
e RevBuffer size set via socket
options (typical default is 4096 bytes)

* many operating systems autoadjust
RcvBuffer

= sender limits amount of unACKed
(“in-flight”) data to received rwnd

= guarantees receive buffer will not
overflow

TCP receiver-side buffering

to application process

RcvBuffer buffered data

T

rwnd

l free buffer space

1

TCP segment payloads

|)

receive window

flow control: # bytes
receiver willing to accept

Transport Layer: 3-4

TCP Transmission Policy

= Sender Buffering

{

. " wastes bandwidth
* a keystroke in telnet session = 41 byte
(40 byte header + 1 byte data)

* be able to reduce header overhead by grouping many small data segments into
one large TCP segment.

0 (RFC 896)

when data come into the sender one byte, send the first byte. Then
1) buffer all the rest
2) Send a new packet
* better to be disabled if used on mouse movements.

Transport Layer: 3-5

TCP connection management

before exchanging data, sender/receiver “handshake”:

= agree to establish connection (each knowing the other willing to establish
connection)

= agree on connection parameters (e.g., starting seq #s)

Transport Layer: 3-6

Agreeing to establish a connection

2-way handshake:

T .
B oy Q: will 2-way handshake always
T letstalk __ work in network?
___—® ESTAB L
st e— OK variable o.lelays
* retransmitted messages (e.g.
req_conn(x)) due to message loss
f‘ .
% E " message reordering
choose x “Teq_conn(x___ = can’t “see” other side

ESTAB &

Transport Layer: 3-7

2-way handshake scenarios

N/

T

choose x

ESTAB

\req_conn(>_<L‘

acc_conn(x+1)

<

connection

data(x+1
.‘/ACK(x+N§

A ESTAB

accept
data(x+1)

T 7 x completes ~

No problem!

4

choose x

retransmit

req_conn(x)
ESTAB X

client™

terminates

\req_conn(>_<L>

R ESTAB

acc_conn(x+1)

reg_conn(x)

_ connection _
X completes

acc_conn(x+1)

server
forgets x

Problem: half open
connection! (no client)

o
3

g

choose x

retransmit
req_conn(x)

ESTAB

retransmit
data(x+1)

acc_conn(x)

onhection

1
client

terminates

req_conn(x)

" da a(x+ 1)\..

—
req_conn(x
> ESTAB

accept
data(x+1)

server
forgets x

\ S EsTAB

data(x+1)

accept
data(x+1)

Transport Layer: 3-8

TCP 3-way handshake

Client state Server state

J[LISTEN
3 J

choose init seq num, x

-
send TCP SYN msg |~

SYNSENT SYN=1, Seq=x
q\ choose init seq num, y

send TCP SYNACK
/ msg, acking SYN SYN RCVD

SYN=1, Seqg=y
ACK=1; ACKnum=x+1
v received SYNACK(x+1)
ESTAB indicates server is live; /
send ACK for SYNACK; |~
this segment may contain ACK=1, ACKnum=y+1
client-to-server data !
., [received ACK(y+1)

indicates client is live v
ESTAB

Transport Layer: 3-9

TCP 3-way handshake

" Three-way handshake : against abnormal cases

Host 1 Host 2 Host 1
Old duplicate

T
{;q(?f(' Y+q
g,

Transport Layer: 3-10

Closing a TCP connection

= client, server each close their side of connection
e send TCP segment with FIN bit=1

= respond to received FIN with ACK
e on receiving FIN, ACK can be combined with own FIN

= simultaneous FIN exchanges can be handled

Transport Layer: 3-11

Closing a TCP connection

= Performed separately in each direction.

K| E

client state

ESTAB

N

FIN WAIT 1

N

FIN_WAIT_2

TIMED_WAIT

CLOSED

close ()

can no longer
send but can
receive data

wait for server
close

timed wait
for 2*max
segment lifetime

\FIN 1
=1, seq=x
-._____..."

/
ACK=1; ACKnum=x+1

—

———“'——————
‘)IN=1, seq=y
...."‘--_>
ACK=1; ACKnum=y+1
\

can still
send data

close ()

can no longer
send data

server state

ESTAB

CLOSE_WAIT

LAST ACK

CLOSED

Transport Layer: 3-12

TCP: State Diagram

FIN WAIT 1: The client
has said it is finished.
FIN WAIT 2: The server
has agreed to release
(half close)

TIME WAIT : Wait for
all packets to die off.

{step 2

................} ual evenit
ender OSEl-
= server/sender path LISTENI- A et
- CLOSEN- —
af the F-way-handshake) SYRN/SYMN+ACK LISTEH.
Y
RETI- : : SENDIZYM
sm et e et et et -...___............._._...............-.........}-. E‘m
RECEWVED |wc. ... SYNSYNSACK (=simultaneous open) . SENT
Data exchange occurs
ACKES- - SN+ ACESACK
= {Step 3 of the F-way-handshake)
- CLOSEIFIN
: CLOSEFIN FINFACHK
T | Active CLOSE Passive CLOSE ||
: Y FINIACK L
i FIN WAIT 1 ____:__:::::::::::__:::::;........_._.......,, CLOSING : : CLOSE WAIT
: FIN+ACKIACK | :]
! : | |
I 7 "
| ACKI- . : i CLOSE/FIN
! : 1 |
: i : ! [
| FIN WAIT 2 ce ™ TIME WAIT L LAST ACK
i FINJACK : :
| Timeout : : ACK-
] 1 | o o o e m o _

COMMECTISYM (Step 1 of the 3-way-handshake)

(Go back to start) _-E

[

Transport Layer: 3-13

TCP: State Transition Diagram

= TIME_WAIT state
. wait
» wait for final segment to be transmitted before releasing connection
* Implementation-dependent (typically 30 sec, 60 sec, 120 sec)

* 2MSL wait protects against delayed segments from the previous “incarnation”
of the connection.

e 2MSL effects

* Socket pair cannot be
* If you kill a client and restart, it will get
* If you kill a server and restart, you may get a bind error.

Transport Layer: 3-14

	슬라이드 1
	슬라이드 2: Chapter 3: roadmap
	슬라이드 3: TCP flow control
	슬라이드 4: TCP flow control
	슬라이드 5: TCP Transmission Policy
	슬라이드 6: TCP connection management
	슬라이드 7: Agreeing to establish a connection
	슬라이드 8: 2-way handshake scenarios
	슬라이드 9: TCP 3-way handshake
	슬라이드 10: TCP 3-way handshake
	슬라이드 11: Closing a TCP connection
	슬라이드 12: Closing a TCP connection
	슬라이드 13: TCP: State Diagram
	슬라이드 14: TCP: State Transition Diagram

