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Chapter 3: roadmap
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TCP flow control

Q: What happens if network layer Application removing
delivers data faster than application data from TCP;S&Z?Z
layer removes data from socket buffers?
—flow control
receiver controls sender, so sender
won't Network layer
by transmitting too much, too fast delivering IP datagram ___

payload into TCP
socket buffers

receive window

flow control: # bytes
receiver willing to accept

application
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TCP socket
receiver buffers

from sender |

receiver protocol stack
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TCP flow control

= TCP receiver “advertises” free buffer
space in rwnd field in TCP header
e RevBuffer size set via socket
options (typical default is 4096 bytes)

* many operating systems autoadjust
RcvBuffer

= sender limits amount of unACKed
(“in-flight”) data to received rwnd

= guarantees receive buffer will not
overflow

TCP receiver-side buffering

to application process

RcvBuffer buffered data

T

rwnd

_l_ free buffer space

1

TCP segment payloads

| )

receive window

flow control: # bytes
receiver willing to accept
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TCP Transmission Policy

= Sender Buffering

{

. " wastes bandwidth
* a keystroke in telnet session = 41 byte
( 40 byte header + 1 byte data)

* be able to reduce header overhead by grouping many small data segments into
one large TCP segment.

0 (RFC 896)

when data come into the sender one byte, send the first byte. Then
1) buffer all the rest
2) Send a new packet
* better to be disabled if used on mouse movements.
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TCP connection management

before exchanging data, sender/receiver “handshake”:

= agree to establish connection (each knowing the other willing to establish
connection)

= agree on connection parameters (e.g., starting seq #s)
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Agreeing to establish a connection

2-way handshake:

T .
B oy Q: will 2-way handshake always
T letstalk __ work in network?
___—® ESTAB L
st e— OK variable o.lelays
* retransmitted messages (e.g.
req_conn(x)) due to message loss
f‘ .
% E " message reordering
choose x “Teq_conn(x___ = can’t “see” other side

ESTAB &
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2-way handshake scenarios
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TCP 3-way handshake

Client state Server state

J[ LISTEN
3 J

choose init seq num, x

-
send TCP SYN msg |~

SYNSENT SYN=1, Seq=x
q\ choose init seq num, y

send TCP SYNACK
/ msg, acking SYN SYN RCVD

SYN=1, Seqg=y
ACK=1; ACKnum=x+1
v received SYNACK(x+1)
ESTAB indicates server is live; /
send ACK for SYNACK; |~
this segment may contain ACK=1, ACKnum=y+1
client-to-server data !
., [received ACK(y+1)

indicates client is live v
ESTAB
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TCP 3-way handshake

" Three-way handshake : against abnormal cases

Host 1 Host 2 Host 1
Old duplicate

T
{;q(?f(' Y+q
g,

Transport Layer: 3-10



Closing a TCP connection

= client, server each close their side of connection
e send TCP segment with FIN bit=1

= respond to received FIN with ACK
e on receiving FIN, ACK can be combined with own FIN

= simultaneous FIN exchanges can be handled
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Closing a TCP connection

= Performed separately in each direction.
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CLOSED

close ()
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close
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-._____..."

/
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\

can still
send data

close ()

can no longer
send data
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CLOSE_WAIT

LAST ACK

CLOSED
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TCP: State Diagram

FIN WAIT 1: The client
has said it is finished.
FIN WAIT 2: The server
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TCP: State Transition Diagram

= TIME_WAIT state
. wait
» wait for final segment to be transmitted before releasing connection
* Implementation-dependent (typically 30 sec, 60 sec, 120 sec)

* 2MSL wait protects against delayed segments from the previous “incarnation”
of the connection.

e 2MSL effects

* Socket pair cannot be
* If you kill a client and restart, it will get
* If you kill a server and restart, you may get a bind error.
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