Thread

Insight

When a program is executed, it is stored in RAM in the form of a process and a process control
block (PCB) for the process is generated in the Kernel. Even if it is similar or the same program,
once it is executed, it becomes a different process.(fork()) But can't we create a small process(Thread)
that shares memory and data in one process? It is Thread that started with this idea. Previously, the

basic unit of CPU Scheduling is known as Process, but for modern OS, Thread is the basic unit of

CPU Scheduling.
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Processes are not always ideal.....



(1) Processes are not very efficient

Each Process has its own PCB and OS resources

b. Creating a new process is often very expensive (Resource)
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(2) Processes don't directly share memory (Protection) >> through IPC

Each Process has its own address space (Process don't know PCB of the process

know the address of process)

Parallel and concurrent programs often want to directly manipulate the same

memory (shared memory is necessary)

>> | want to share it directly, but processes do not have direct
access to memory and exchange information in IPC format. But
it's time consuming and it's inefficient to keep data that can be
used together from being exchanged separately

What can we do?

Let's share same code and same data (Text Data Heap)

What is private to each thread (Cpu Registers,Stack,and Program counter)

The Process is the address space and OS resources (PCB)

Each thread has its own CPU execution state (Thread is basic unit of CPU Scheduling)

Process is shared office and Thread is Chef



Processes and Threads

Process is just a container for its threads (The process is the address space and OS resources)
Thread is a basic unit of CPU scheduling (Each thread has its own CPU execution state)
Each thread is bound to its containing process

Each thread has its own stack,CPU,Registers

All threads within a process share the same address space and OS resources (Thread is chef

in shared office)

Threads share memory,so they can communicate directly with other thread in same process



Address space
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(1) Simple Programs can have one thread per process (The process we have known is single

thread process)
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(2) Complex Programs can have multiple threads
a. Multi-Threaded process

b. Multiple threads running in same process’s address space(address space == container

== process)

¢. Each Thread can run on different CPUs(cores) while sharing memory resource (In Multi
Processors, the concept of Multi-Threaded process is necessary for efficient resource

consuming)
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Process Address Space with Threads

All threads in a single process
share the same address space!

(1) Stack and Process counter and Registers is Private resources to each Thread.



Control Blocks (Thread Control Block)

(1) Ready Queue is now a list of TCBs waiting for CPU resource

(2) Context switching is done for TCBs.

(3) Remind that the unit of CPU scheduling is Thread
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Benefits of Multithread
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Resource Sharing

a. Threads share memory resources of process — (CPU run-time resources such as
register,stack,PC are not shared) (process 2t0f S&M o=z Z=|stof 27| 7| LS
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b. Easier to share than IPC because threads share code,datafiles resources directly in

same Address Space

Lighter weight
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a. Creation,Deletion faster

The things OS have to do for creating of Thread is assigning Stack Pointer in Stack

and Program Counter in Code
b. Context-switching faster
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Allows one process to use multiple CPUs or cores (Thread”7} StLtSICHH coreZt BEOF=
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a. A multithreaded process can take advantage multiprocessor architectures
b. A process can run many threads in parallel on different processor cores
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a. Allow continued execution if part of process is blocked
b. Multithreaded process: another thread can continue
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c. So better responsiveness to the user

MultiCore Programming

» Concurrent Execution on a Single-core System e
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(1) Concurrency supports more than one task making progress — Single Core Processor can
provide Concurrency (CPU Scheduling@ 2 O{2{ taskE XNz2|& £ UAX|2 simultaneously
= OfLCH HF #etM 12t =0 SimultaneouslydtA O 1 X])

(2) Parallelism implies a system can perform more than one task simultaneously — Need Multi-

core processor

(3) By using multithreading, One process (Adress Space) can use multiple processors (cores)



Multithreading Models
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(1) Kernel Threads (2|7} X| 27X H|& Threads?} kernel Threads OS7} M|/ZH Zt2|stC})

A. Threads supported by the kernel (Thread creation and management requires system

calls)
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B. Pros

a. Can run multiple threads on multi-core

kernelO| =2}7t

b. Concurrency: another thread can run when one thread makes blocking system

call (F2lsjotst= & o Process®tOl A= Thread”t System call2 wait2 7t

C2tE Ct2 thread= AH7| & Y2 & 4= ULh)

C. Cons

Every thread operation must go through kernel (O{3| forkZ2 Msjof o=

process operation 2CH &M W21 H8HO0|Ct)
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(2) User thread
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A. Created,managed without kernel support (no need for system call so fast) — therefore,

Kernel do not know user thread exists in kernel thread
B. Implement thread in user library
C. Many user threads mapped to single kernel thread
D. Pros

a. Fast and efficient (no need for system calls)

Kernel thead | Process

Null fork 34 11300
Signal-wait 37 441 1840

b.

E. Cons

a. One thread blocking causes all to block (Kernel don't know user thread exists in
kernel thread)

b. Multiple user-level threads may not run in parallel on multicore system (User level

thread cannot be executed by multiple cpu cores)

>> Because Kernel processes the unit of kernel thread. Kernel don’t know what

user thread is



Thread Libraries

(1) Pthread_create() to create new thread with ‘pthread’ library
Tid,Function,argv is needed for creating Thread

(2) Pthread_join() function to suspend parent thread until child thread terminates. Similar to

wait system call in process

Thread vs Process Creation

(1) Fork()

a. Two separate processes

b. Child process start from same position as parent (clone)

¢. Independent memory space for each process (Address Space)
(2) Pthread_create()

a. Two separate threads

b. Child thread starts from a function

c.  Share memroy

Conclusion

(1) Thread Concept
a. Basic unit of CPU shceduling

b. Shares with other threads belonging to the same process its code,data and other

resources (heap files) such as open files and signals (not register,stack PC)
(2) Multi-threading models (kernel thread,User Thread)

(3) Thread Libraries : Pthread,Java Thread



Future work v,
* Who gets to go next when a thread blocks/yields?

+ Scheduling! (Ch. 5)

* What happens when multiple threads are sharing the same
resource?
« Synchronization! (Ch. 6)



