Thread

Insight

When a program is executed, it is stored in RAM in the form of a process and a process control
block (PCB) for the process is generated in the Kernel. Even if it is similar or the same program,
once it is executed, it becomes a different process.(fork()) But can't we create a small process(Thread)
that shares memory and data in one process? It is Thread that started with this idea. Previously, the

basic unit of CPU Scheduling is known as Process, but for modern OS, Thread is the basic unit of

CPU Scheduling.
max
stack Fﬁ_ PC
sack e [thead#2 |
T PC
heap
PC
data
text «

SHAL H|Z2BF ProcessS2 2 Fork2 MASHAM HH|SIX| Z10 8HLEO| ProcessE Address Space
Z(Container)2 11 H7|0| E2 ThreadE THS0{(Q 22| ThreadE2 PCStack,Register H1l+=
E|' Oo|- _J[k_ O||:|')CPU A;_”xalo| |:|-o|§ |_x|.

Of

(1) Thread?} 373t= ZA: Text,Data,Heap

(2) Thread?t S/5HXA| = Private 84 Stack,PC(Process Counter),Register(Xt7|7} AHES 0l
CPU)

Processes are not always ideal.....

(1) Processes are not very efficient

Each Process has its own PCB and OS resources

b. Creating a new process is often very expensive (Resource)

>>Z4210| AY st USOF O 517 =20 JH|7F &t

(2) Processes don't directly share memory (Protection) >> through IPC

Each Process has its own address space (Process don't know PCB of the process

know the address of process)

Parallel and concurrent programs often want to directly manipulate the same

memory (shared memory is necessary)

>> | want to share it directly, but processes do not have direct
access to memory and exchange information in IPC format. But
it's time consuming and it's inefficient to keep data that can be
used together from being exchanged separately

What can we do?

Let's share same code and same data (Text Data Heap)

What is private to each thread (Cpu Registers,Stack,and Program counter)

The Process is the address space and OS resources (PCB)

Each thread has its own CPU execution state (Thread is basic unit of CPU Scheduling)

Process is shared office and Thread is Chef

Processes and Threads

Process is just a container for its threads (The process is the address space and OS resources)
Thread is a basic unit of CPU scheduling (Each thread has its own CPU execution state)
Each thread is bound to its containing process

Each thread has its own stack,CPU,Registers

All threads within a process share the same address space and OS resources (Thread is chef

in shared office)

Threads share memory,so they can communicate directly with other thread in same process

Address space

Thread 0 é

Thread 2

I

Process

Thread

(1) Simple Programs can have one thread per process (The process we have known is single

thread process)

| code H data

fias |
registers slack

o]

-

thread =

Fa
S

sinagle-threaded process

(2) Complex Programs can have multiple threads
a. Multi-Threaded process

b. Multiple threads running in same process’s address space(address space == container

== process)

¢. Each Thread can run on different CPUs(cores) while sharing memory resource (In Multi
Processors, the concept of Multi-Threaded process is necessary for efficient resource

consuming)

OXFFFFFFFF
[}

Address space

0x00000000

| code || dala || files |
|

| registars |||ragisl.m‘s | |ragisners|

| stack ” slack | stack

:

g._

= thread

mubtithrezded process

(Reserved for OS)

Stack

v

.

Uninitialized vars
(BSS segment)

Initialized vars
(data segment)

L

Code
. (text segment) |

- Stack pointer

= Program counter

Process Address Space (Old)

OXFFFFFFFF

Address

000000000

Process Address Space with Threads

(Reserved for O5)

Stadtfor'lhl'ead a

Stack pointer for thread 0

Stack for thread 1

-+— Stack pointer for thread 1

Stack for thread 2
Al

space i

Uninitialized vars
(BSS segment)

Initialized vars

(data segment)
Code

Stack pointer for thread 2

-— PC for thread 1
-— PC for thread 0

__ (textsegment) |

=—PC for thread 2

Process Address Space with Threads

All threads in a single process
share the same address space!

(1) Stack and Process counter and Registers is Private resources to each Thread.

Control Blocks (Thread Control Block)

(1) Ready Queue is now a list of TCBs waiting for CPU resource

(2) Context switching is done for TCBs.

(3) Remind that the unit of CPU scheduling is Thread

Process ID (PID)

Parent PID

Next Process Block

- e I T

List of open files

Image File Name

“

MV

Thread Control Block (TCB)

—t—

List of Thread
Control Blocks Next TCB
Program Counter
Registers
as
[=] j - I e ‘ - l L i

L= »i=]

e
Thrant Tebadsur

Benefits of Multithread

(M

@)

Resource Sharing

a. Threads share memory resources of process — (CPU run-time resources such as
register,stack,PC are not shared) (process 2t0f S&M o=z Z=|stof 27| 7| LS

SEX[2F memory resourcesE &7 (text,data,heap,files)Bf S 2N 7|E forkE processE

= H2Es S50t

-

b. Easier to share than IPC because threads share code,datafiles resources directly in

same Address Space

Lighter weight

©)

4)

a. Creation,Deletion faster

The things OS have to do for creating of Thread is assigning Stack Pointer in Stack

and Program Counter in Code
b. Context-switching faster

CPUO| HEE W1 CIA] Y= A|ZF2 Thread= 7|Z& Processe= Z5F ZHCh SHX|EE
Thread®| A2 &2 Thread2t® Context-switching IS O0|A| CacheE H|2X| 20}

T &7 U420 Process 7t Context-switching®2Ct B HH2Ct

T NG
Global fork ()
Variables |
Process B
Code Global
Variables
Code
Process A
Thread 1
Global pthread create()
Variables
Cod
- Process A
Thread 2

Allows one process to use multiple CPUs or cores (Thread”7} StLtSICHH coreZt BEOF=
StLpgo SEAIZ = UKX|IEH B2 threadsZt UCHH SHLEQ| preoess?t EE2 cpu cores
E SA0 AF2E 4= QUL Thread= Multi-core?t BHoS M A|HX| Zut7b SCHsE =

)

M
-

a. A multithreaded process can take advantage multiprocessor architectures
b. A process can run many threads in parallel on different processor cores
(HY simultaneouslyStHl 032 threads& =2 =+ UA =)

Non-blocking system call (7| single threaded process RACHH waitS THLFH ZLHCE S}
= Q

X2 thread7t BCHE SHLEZE wait®] Z2i= LAl SEHO0[7| WEo A7 2L

a. Allow continued execution if part of process is blocked
b. Multithreaded process: another thread can continue

(7I& single threaded process®| &2 1/O operationg ol wait0f CH7|SHH ZO|X|

Ot Multi-threaded process@| A process 20| SFLtQ| thread7t waitOl Z2{&= Ct

£ thread=2 A& execution®tCh)

c. So better responsiveness to the user

MultiCore Programming

» Concurrent Execution on a Single-core System e

single core T4 Tz T3 Ty T4 Tz iz Ty Ty

time

* Parallel Execution on a Multicore System

core 1 T‘] T3 T1 T3 T4| - | c."u- | | N, | | i

core 2 To Ta T2 Ta T2 e

time

(1) Concurrency supports more than one task making progress — Single Core Processor can
provide Concurrency (CPU Scheduling@ 2 O{2{ taskE XNz2|& £ UAX|2 simultaneously
= OfLCH HF #etM 12t =0 SimultaneouslydtA O 1 X])

(2) Parallelism implies a system can perform more than one task simultaneously — Need Multi-

core processor

(3) By using multithreading, One process (Adress Space) can use multiple processors (cores)

Multithreading Models

autars ||| regislans

aladk Slack | |

+—— Bhread

multithreaded procass

(1) Kernel Threads (2|7} X| 27X H|& Threads?} kernel Threads OS7} M|/ZH Zt2|stC})

A. Threads supported by the kernel (Thread creation and management requires system

calls)

OF st2 2 OS7t =2|slof $tCt.
B. Pros

a. Can run multiple threads on multi-core

kernelO| =2}7t

b. Concurrency: another thread can run when one thread makes blocking system

call (F2lsjotst= & o Process®tOl A= Thread”t System call2 wait2 7t

C2tE Ct2 thread= AH7| & Y2 & 4= ULh)

C. Cons

Every thread operation must go through kernel (O{3| forkZ2 Msjof o=

process operation 2CH &M W21 H8HO0|Ct)

Process ID (PID) V

Parent PID

Next Process Blocdk '

List of open files o
Image File Name
Thread Control Block (TCB)
List of Thread
Program Counter
Registers

oy o
=1-[=]

| ot i |

(2) User thread
T W

:

+—— yser thread

T A

+—— kame| thread

A. Created,managed without kernel support (no need for system call so fast) — therefore,

Kernel do not know user thread exists in kernel thread
B. Implement thread in user library
C. Many user threads mapped to single kernel thread
D. Pros

a. Fast and efficient (no need for system calls)

Kernel thead | Process

Null fork 34 11300
Signal-wait 37 441 1840

b.

E. Cons

a. One thread blocking causes all to block (Kernel don't know user thread exists in
kernel thread)

b. Multiple user-level threads may not run in parallel on multicore system (User level

thread cannot be executed by multiple cpu cores)

>> Because Kernel processes the unit of kernel thread. Kernel don’t know what

user thread is

Thread Libraries

(1) Pthread_create() to create new thread with ‘pthread’ library
Tid,Function,argv is needed for creating Thread

(2) Pthread_join() function to suspend parent thread until child thread terminates. Similar to

wait system call in process

Thread vs Process Creation

(1) Fork()

a. Two separate processes

b. Child process start from same position as parent (clone)

¢. Independent memory space for each process (Address Space)
(2) Pthread_create()

a. Two separate threads

b. Child thread starts from a function

c. Share memroy

Conclusion

(1) Thread Concept
a. Basic unit of CPU shceduling

b. Shares with other threads belonging to the same process its code,data and other

resources (heap files) such as open files and signals (not register,stack PC)
(2) Multi-threading models (kernel thread,User Thread)

(3) Thread Libraries : Pthread,Java Thread

Future work v,
* Who gets to go next when a thread blocks/yields?

+ Scheduling! (Ch. 5)

* What happens when multiple threads are sharing the same
resource?
« Synchronization! (Ch. 6)

